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Abstract

An analytical solution for the stress, strain and displacement fields in an internally pressurized thick-walled cylinder
of an elastic strain-hardening plastic material in the plane strain state is presented. A strain gradient plasticity theory is
used to describe the constitutive behavior of the material undergoing plastic deformations, whereas the generalized
Hooke’s law is invoked to represent the material response in the elastic region. The solution gives explicit expressions
for the stress, strain and displacement components. The inner radius of the cylinder enters these expressions not only in
non-dimensional forms but also with its own dimensional identity, unlike classical plasticity-based solutions. As a
result, the current solution can capture the size (strengthening) effect at the micron scale. The classical plasticity-based
solution of the same problem is shown to be a special case of the present solution. Numerical results for the maximum
effective stress in the cylinder wall are also provided to illustrate applications of the newly derived solution.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the context of classical plasticity, the internally pressurized thick-walled cylinder problem has been
well studied. Solutions of this problem have been derived in the literature using different constitutive
models. For example, for elastic perfectly plastic cylinders (tubes) under internal pressures exact solutions
were provided in Hill (1950) and Nadai (1950). A closed-form solution for an internally pressurized thick-
walled cylinder of an elastic strain-hardening plastic material in the plane strain state was derived in Gao
and Wei (1991), and an analytical solution for a similar problem in the plane stress state was developed in
Gao (1992). However, in these solutions (based on classical elasticity and plasticity theories) the size of the
cylinder is involved only in a non-dimensional fashion (and neither the inner nor the outer radius of the
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cylinder enters the solutions individually). This is true not only for the (larger) elastic domain, but also for
the (localized) plastic domain near the inner surface.

Expanding cavity models (e.g., Johnson, 1970; Yoffe, 1982) are often employed to describe stress re-
sponses of elastic—plastic materials to progressive indentation loading in indentation tests because of their
simplicity. For planar indentations the existing expanding cavity models (ECMs) are based on Hill’s (1950)
solution for the quasi-static expansion of a cylindrical tube of an elastic perfectly-plastic material under an
internal pressure. These ECMs have been found to break down for materials having appreciable strain-
hardening characteristics (e.g., Tabor, 1986; Lawn, 1998). Furthermore, indentation tests have revealed
that hardness, which is determined from the size of impression caused by indentation loads, is size de-
pendent when the characteristic length of the impression is on the order of tens of microns (e.g., Tabor,
1986; Hutchinson, 2000; Swadener et al., 2002). That is, the material hardness increases with the decrease of
the size of the indent at the micron scale. However, the existing ECMs do not have capabilities to account
for this indentation size effect, because Hill’s (1950) solution upon which the ECMs were built was derived
using classical plasticity that is local in nature and does not contain any internal length scale (Hutchinson,
2000). Therefore, higher-order (non-local) continuum theories should be applied to derive new solutions for
the thick-walled cylinder problem so that improved ECMs, which incorporate both the strain-hardening
and indentation size effects, can be ultimately constructed for modeling planar indentations.

The objective of the present paper is to provide such a solution using a strain gradient plasticity theory.
In the derivation, the classical elasticity theory (Hooke’s law) is used in the elastic region, whereas a strain
gradient plasticity theory is employed in the plastic region. The solution is derived in a closed form for
the stress, strain and displacement components. There is one parameter involved in the solution, whose
numerical values can be determined from its defining equation (one boundary condition) using a simple
iterative procedure. The inner radius of the cylinder is shown to explicitly appear in the solution with its
own dimensional identity, unlike that in a classical plasticity solution.

The rest of this paper is organized as follows. Section 2 begins with a brief review of various strain
gradient theories, resulting in the adoption of a gradient theory for the current analysis. The boundary-
value problem (BVP) is then formulated, which leads to a closed-form elasto-plastic solution based on the
chosen strain gradient plasticity theory. The classical plasticity-based solution of the cylinder problem is
recovered in Section 3 as a special case of the gradient plasticity-based solution. Also, numerical results for
the maximum effective stress in the cylinder wall are presented there to illustrate applications of the newly
derived solution. The paper concludes with several remarks in the fourth and last section.

2. Formulation of the boundary-value problem
2.1. Review of strain gradient plasticity theories

Classical plasticity theories are based on Cauchy’s stress principle, which assumes that the stress state at
a material point in a continuum is influenced only by the stress states of the points in the immediate
neighborhood of the material point. These plasticity theories do not consider long-range interactions
among material points and are therefore local in nature. Lacking an internal length parameter, classical
plasticity theories cannot describe the size effect observed in numerous experiments involving a small length
scale, which include indentation tests. This has motivated the development of strain gradient plasticity
theories (Hutchinson, 2000).

There exist two categories of strain gradient plasticity theories. In the first category, including those
of Fleck and Hutchinson (1993, 2001), Gao et al. (1999), Huang et al. (2000) and Hwang et al. (2002),
higher-order stresses (conjugated to higher-order strain gradients), in addition to the Cauchy stress, are
introduced, and higher-order (or additional) governing equations and extra boundary conditions are
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necessitated. In the second category, including the ones proposed by Miihlhaus and Aifantis (1991),
Acharya and Bassani (1996), Chen and Wang (2000) and Gao and Huang (2001), no higher-order stress is
involved and the balance laws remain the same as those in classical plasticity. Moreover, the last three of
the four strain gradient theories in the second category listed above are not accompanied by extra (higher-
order) boundary conditions in their original formulations. This feature would make the three theories very
attractive in applications, since higher-order boundary conditions may not be uniquely defined and/or can
be difficult to satisfy. However, the necessity of having extra boundary conditions in applying a lower-order
gradient theory in the second category has recently been demonstrated by Volokh and Hutchinson (2002).
In contrast, the lower-order gradient theory of Miihlhaus and Aifantis (1991), also belonging to the second
category and cited earlier, does involve extra boundary conditions, which are defined (non-uniquely) by a
variational principle. This theory has recently been used in Gao (2002, 2003) to obtain analytical solutions
of two different problems.

The strain gradient plasticity theory elucidated in Miihlhaus and Aifantis (1991) introduces higher-order
spatial gradients of the effective plastic strain into the yield condition (or the constitutive equation for the
flow stress), while leaving all other features of classical plasticity unaltered. The idea of modifying the
standard yield criterion in the afore-mentioned manner was explored earlier in Coleman and Hodgdon
(1985). This modification results in the inclusion of a length scale into classical plasticity and renders it
possible to model mechanical phenomena involving fine length scales. The simplest version of this strain
gradient plasticity theory in its rate-independent form (e.g., Zhu et al., 1997; Gao, 2002) utilizes, in the yield
condition,

0. = ol — ¢V, (1)
where g, and ¢ are, respectively, the total and the homogeneous part of the effective stress, ¢ is the ef-
fective plastic strain, ¢ is the strain gradient coefficient (i.e., a force-like constant measuring the effect of
strain gradient), and V? is the Laplacian operator. The modified yield criterion then reads g, < oy (rather
than ¢! <ay), where g, is the yield stress of the material; when the equality is reached, yielding will occur.
The extra boundary conditions arising from the inclusion of the strain gradient term in Eq. (1) can be
represented by

— P
6n_0 or & =28 on?d B, (2)
where ' B is the boundary of the plastic region, # is the unit outward normal to 0*B, and the overbar stands
for the prescribed value. All other equations in classical plasticity will remain unchanged in this strain
gradient plasticity theory.

Egs. (1) and (2) will be used, together with other relations in Hencky’s deformation theory of plasticity
(e.g., Mendelson, 1968; Gao, 1994, 1998, 1999), in deriving the solution for the plastic region.

2.2. Formulation

Consider an elasto-plastic plane strain cylinder of the inner radius ¢ and outer radius » and subjected to
the internal pressure p;, as shown in Fig. 1. The usual polar coordinates (r, 0) will be used to represent a
point on a cross section of the cylinder.

If p; is sufficiently small, the entire cylinder remains elastic. However, when p; becomes large enough, the
cylinder begins to yield from the inner surface » = a. With the continuous increase of p; the yielded region
will expand outwardly. From symmetry it follows that the elasto-plastic interface is also a cylindrical
surface for any value of p; that produces a plastic region. Let 7. be the radius of this elasto-plastic interface,
and p. be the associated pressure acting on the interface under p; (a generic value). Then, the material in the
region a < r < r. is in the plastic state, whereas the material in the region . < < b remains elastic under p;.
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Fig. 1. Problem configuration.

When in a complex stress state, the power-law hardening model in classical plasticity has the form:

? = K&, 3)
where k and m are two material constants. It can be shown that x = a;""E’", with E being Young’s modulus
of the material. Eq. (3) will be used in Eq. (1) (as the expression for ¢') to define the total effective stress g
in the strain gradient plasticity theory, which is to be applied to derive the solution in the plastic region. On
the other hand, the material response in the elastic region is assumed to still obey the generalized Hooke’s
law. This will allow the direct application of Lamé’s classical elasticity solution in the elastic region, which is

away from the (localized) plastic zone near the inner surface.
The elasto-plastic cylinder problem can now be formulated as a standard BVP and solved analytically.

g

2.2.1. Solution in the elastic region (r.<r<b)

This region can be treated as a thick-walled cylinder of the inner radius » = r, and outer radius » = b and
subjected to the internal pressure p.. Then, using Lamé’s solution for the plane strain case (e.g., Little, 1973)
gives the stress components as

2 2 2 2 2
DT b e b B Dl
Grr:bz_rz (1_’/2)7 GHH_bz _crz <1+r2>7 Uzz_zvbz _crzv (4)
the strain components as
l+v pr? b
= Roa\ TP TR)
1+v pi? b? (5)
= "F —crg (1 —2v+r—2 ,
& =0,
and the displacement component as
1+v per? b?
U=—% b2—r2(1_2v+r2 r. (6)

In Egs. (5) and (6), v is Poisson’s ratio of the material. Clearly, this solution is expressed in terms of two yet-
unknown parameters p. and r., which will be determined from the boundary (interface) conditions later.
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On the elasto-plastic interface » = r, the stress components (through the effective stress) given in Eq. (4)
must satisfy the yield condition

r=re = O-Y' (7)

This provides one relation for determining p. and r..

0|

2.2.2. Solution in the plastic region (a <r<r.)

Under the assumptions of infinitesimal deformations, isotropic hardening, incompressibility and
monotonic loading, the governing equations in a stress formulation, which embody Hencky’s deformation
theory, the strain gradient theory (with the modified von Mises’ yield criterion), and the power-law
hardening model, of the present axi-symmetric problem include the equilibrium equation (e.g., Chou and
Pagano, 1967)

do,,
Ggg — Op = FW7 (8)

the compatibility equation (e.g., Chou and Pagano, 1967)

de
rd—:_g = &y €00, (9)
and the constitutive equations (e.g., Nadai, 1950; Gao, 1999, 2002)
3 &
Epr = Z O'_e (Grr - 00()) = —¢&p, (10)
O, = K&, — cste, (11)
V3
O = -5 (0g9 — 0,). (12)
The boundary conditions of this problem are
Gﬂ”|r:a = _pi7 Grr|r:rc = _pCv (133, b)
85|r:a = D7 8e|r:rc = % . (143, b)

Eq. (13a,b) are two standard boundary conditions for deriving a classical plasticity solution (e.g., Gao and
Wei, 1991; Gao, 1992), while Eq. (14a,b) are two extra boundary conditions arising from the use of the
strain gradient theory, as discussed earlier. Here, D is a constant to be determined as part of the solution.
Eqgs. (8)-(12), (13a,b) and (14a,b) define the BVP for determining the stress and strain fields in the plastic
region. This BVP can be analytically solved as follows.
Using Eq. (12) in Eq. (10) gives

V3 V3
8,,:—786, 8992783. (15)
Substituting Eq. (15) into Eq. (9) then yields
de, dr
P -2 —- (16)
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Integrating Eq. (16) from a to r and invoking Eq. (14a) will lead to

2
a
Ee :Dﬁ (l7)

Inserting Eq. (17) into Eq. (14b) gives

2
O'y rc
=2 (18)
Eq. (18) provides a first relation among the three unknown parameters D, r. and p..
Using Eq. (17) in Eq. (11) results in
2

oo = D’”(g)zm—4cDj—4. (19)

Now inserting Egs. (12) and (19) into Eq. (8) gives

2 . a2m a2
% (KD r2m+1 — 4CDr—5) dr. (20)

A direct integration of Eq. (20) from « to r leads to, together with Eq. (13a),

do,. =

2 [kD" a*" 1 1
Jrr:_pl+\/§|:2n1<1_7‘2’”>_6Da2<g4_r4>:| (21)
Substituting Eq. (21) into Eq. (13b) results in
2 [ kD™ a*" (1 1
Pi—Pczﬁ[ﬁ(l—ﬂj)—CDa (E—F)} (22)

which is a second relation required for determining the three unknown parameters. The third relation is
furnished by Eq. (7). Using Egs. (4) and (12) in Eq. (7) yields

as the last relation needed. Clearly, 0 <p. < g,/ V/3, as dictated by Eq. (23). By solving Egs. (18), (22) and
(23), D, r. and p. will be determined. Inserting Eqgs. (18) and (23) into Eq. (22) gives

2 2m 2 4
T R W B AN R W N v SR
=G0 ) e (B) () - Faa(5)] 2

This equation may be solved by using an iterative procedure to obtain the value of . for given values of E,
oy, K, m, ¢ (material properties) and « (inner radius). Knowing ., Eqgs. (18) and (23) then give D and p.,
respectively. As displayed in Eqgs. (18), (23) and (24), r., D and p. are all dependent on the inner radius a.
This will lead to the stress and strain fields which are varying with a, as shown below.

Using Eqgs. (12), (18), (19), (21) and (24) gives the two in-plane stress components as

oot (1= ¢ 2 () (1) o L (o
o \/g b2 \/g 2m\E r2m E az az ré }"4 )

2 2m 2 4 4
gy r, 2 K (Gy\" T oec 1 r; (a*  3a
=——(1-= (= 1 om— 1) | =~ Te [ _

o \/§< b2>+\/§{2m(E> [ +(2m )er} E & a2 r‘4+r4

(25)
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It then follows from Eq. (25) that

1
0z = 5 (0 + Too)
2 p2m 4 4
ay v 2 K [0y oyc 1 rg at a
=——(1-= ——(=) |1 —1 —+—= 26
\/§( b2)+\/§{2m(E) [—i—(m ) ] E & & r§+r“ (26)
as the axial stress component. Substituting Eqs. (17) and (18) into Eq. (15) gives the strain components as
3 2 2
grr:_iﬂr_c, 800:£_Y_c 6. = 0. (27)
2 Er? 2 E
Finally, from the geometric equations:
du u
o — 7 s 500 — — 28
& dr Epo , ( )

and Eq. (27) it follows that the only non-zero (radial) displacement component is

2
_V3ay e (29)
2 Er
This completes the derivation of the solution in the plastic region (a <r <r.).

With the parameters p. and r. determined respectively from Eqs. (23) and (24), the stress, strain
and displacement components in the elastic region (r. <7< b) can be readily obtained from Egs. (4)-
(6).

Clearly, the stress components given in Egs. (25) and (26) explicitly depend on the inner radius a as well
as the non-dimensional quantities 7. /a and a/r, noting that r./r = (r./a)(a/r) and r./b = (r./a)(a/b). This
size dependence is also displayed by the strain and displacement components listed in Egs. (27) and (29) as
well as the stress, strain and displacement fields in the elastic region (see Egs. (4)—(6)), because r. involved in
all relevant expressions is dependent on a, as shown in Eq. (24). Hence, the current solution has the capacity
to account for the size effect. This is not the case for classical plasticity-based solutions. For example, in the
elastic perfectly plastic solution of Nadai (1950) and in the elastic strain-hardening plastic solution of Gao
and Wei (1991) for the same problem using the classical plasticity theory only non-dimensional geometrical
quantities a/r and r./r are involved, and the inner radius a does not enter the solution individually, as will
be seen in the next section.

3. Applications and numerical results

The elasto-plastic solution derived in the preceding section is applied here to obtain specific solutions
and numerical results.

3.1. Classical plasticity solution

When ¢ = 0, the BVP in the plastic region defined by Egs. (8)—(12), (13a,b) and (14a,b) will be reduced to
that based on the Hencky deformation theory and the von Mises yield criterion in classical plasticity.
Hence, letting ¢ = 0 in Egs. (25) and (26) gives
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S B SR DL R
e \/g b2 m y2m ’
o

3L-(-5)2 (D3]

as the stress components, where r, satisfies

o 5[0-3) 25

which is reduced from Eq. (24) with ¢ = 0. In deriving Egs. (30) and (31), use has also been made of
K= a;*mE"’. The strain and displacement components in the plastic region have the same expressions as
those listed in Egs. (27) and (29) except that r. involved in the expressions is now defined by Eq. (31). The
same is true for the stress, strain and displacement components in the elastic region, which continue to be
given by Egs. (4)—(6) (with only 7. to be changed). This solution is identical with that derived in Gao and
Wei (1991) for the same problem using classical plasticity. That is, the current gradient plasticity solution
includes the classical plasticity-based solution as a special case. In particular, when m = 0, the elastic power-
law plastic constitutive model employed here reduces to that for the elastic perfectly plastic material (see
Eq. (3)). For this particular case it follows from Egs. (30) and (31), with m = 0 and the use of I'Hopital’s
rule, that

2 7 2 2
Gy rc e O'y I’C e O'y I”'c re
o= 1yl _om”, =D+l om™|, =2k _omE 32
g \/§[ —|—b2 nr_ Top ﬁ{ +b2 nr] o ﬁ{bz nr] (32)
and
o (127 o] (33)
P= 75 ik

These expressions are identical to those given in Nadai (1950). Hence, the classical plasticity solution for the
elastic perfectly plastic thick-walled cylinder is recovered by the current solution as a limiting case with
c=0and m=0.

For given loading (p;), material properties (o, m) and radius ratio (b/a), Eq. (31) can be readily solved
to determine r./a. From Egs. (30), (27), (29), (4)-(6) and (23) it can be seen that the stress, strain and
displacement components of the resulting classical plasticity solution depend on the inner radius a only in a
non-dimensional fashion (with r./r = (r./a)(a/r) and r./b = (r./a)(a/b)), which differs from that displayed
by the gradient solution with ¢ # 0. Clearly, this property of the classical plasticity-based solution is also
shown in the specific solution given in Egs. (32) and (33).

3.2. Maximum effective stress

The effective stress (o.) measures the level of stress at a material point in a complex (multiaxial) stress
state. It follows from Egs. (18) and (19) that the maximum effective stress in the cylinder wall is given by,

with a.|,_, = o0,

max e 2m c 1 7. 2
o =a(y) g a(G) (34)
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where use has been made of xk = a;””E’”. Let

1= \/% (35)

be a characteristic (internal) length, which is a material constant. Then, Eq. (34) can be rewritten as

max

gt (T AL ey
oy 7(61) az(a)' (36)
The classical plasticity solution gives, using Egs. (12) and (30),

max

% () (37)
oy a

which could also have been obtained directly from Eq. (34) with ¢ = 0. A comparison of Egs. (36) and (37)
shows that the gradient plasticity solution incorporates an internal (material) length, /, and includes the
inner radius, «, in both dimensional and non-dimensional forms, while the classical solution involves a only
in a non-dimensional fashion. The differences between the two solutions in terms of the maximum effective
stress are further illustrated in Fig. 2, which is based on the data listed in Table 1. In Fig. 2, Y denotes
00 /g,. The material properties used to obtain the numerical values given in Table 1 are for an aluminum
material having £ = 73 GPa, m = 0.25, ¢ =2.5 N, and / = 5.852(10°°) m (Zhu et al., 1997; Gao, 2002,

1.69
1.2

e Classical

> 0.8 .
064 Gradient

0.4
0.2
0

T T 1

0 100 200 300 400 500
a (um)

Fig. 2. Maximum effective stress in the cylinder wall.

Table 1

™ /g, for different values of a (with r./a = 2.0)
a (m) o /o, (gradient) o™ /o, (classical)
20%10°° 0.04435054868 1.41421356237
40x107° 1.07174780895 1.41421356237
60x10°° 1.26200656085 1.41421356237
80x10° 1.32859712402 1.41421356237
100x107° 1.35941904183 1.41421356237
200% 10 -¢ 1.40051493224 1.41421356237
500x107° 1.41202178155 1.41421356237
0.001 1.41366561717 1.41421356237
0.002 1.41407657607 1.41421356237
0.005 1.41419164457 1.41421356237
0.01 1.41420808292 1.41421356237
0.05 1.41421334320 1.41421356237

0.1 1.41421350758 1.41421356237
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2003). The listed data are directly calculated from Egs. (36) and (37) using Mathematica program (of
Wolfram Research, Inc.).

From Table 1 and Fig. 2, it is clear that the maximum effective stress predicted by the gradient plasticity
solution is indeed size dependent when the inner radius «a is very small (on the order of tens of microns). The
smaller a is, the smaller ¢7** becomes, thereby explaining the size (strengthening) effect at the micron scale.
On the other hand, when the inner radius « is large (at the scale of 200 microns or above), the prediction of
the gradient plasticity solution approaches that of the classical plasticity solution, which is a constant in-
dependent of a. This indicates that there is no pronounced size effect if no small (micron) length scale is
involved, which is in agreement with what was noted by Hutchinson (2000) in a general context. Therefore,
the use of classical plasticity to describe macroscopic behavior (beyond micron scale) of internally pres-
surized thick-walled cylinders is justified.

4. Conclusion

An analytical solution is provided for the plane strain problem of an internally pressurized thick-walled
cylinder of an elastic strain-hardening plastic material. The solution is based on a strain gradient plasticity
theory, which introduces a higher-order spatial gradient (the Laplacian) of the effective plastic strain into the
standard expression of von Mises’ yield condition in classical plasticity. Hencky’s deformation theory, the
modified von Mises yield criterion, and the power-law hardening model form the constitutive relations
governing deformations in the plastic region. The generalized Hooke’s law is used to describe material
behavior in the elastic region.

The solution is derived in a closed form. Explicit expressions are provided for the stress, strain and
displacement components in both the elastic and plastic regions. There is only one parameter involved in
the solution that needs to be determined numerically using an iterative procedure. These expressions show
that the cylinder inner radius enters the current solution with its own dimensional identity as well as in non-
dimensional forms, unlike solutions based on classical elasticity and plasticity theories.

The classical plasticity-based solution of the same cylinder problem is recovered by the current gradient
plasticity-based solution. Illustrative numerical results for the maximum effective stress in the cylinder wall
are presented to show how the two solutions may differ. It is found that the gradient solution can capture
the size effect, whereas the classical solution does not have the same capability. Nevertheless, the numerical
data demonstrate that the classical plasticity-based solution and the gradient plasticity-based solution
predict almost identical results if no small (micron) length scale is involved.

The analysis presented here is for pressurized cylinders undergoing plane strain deformations (e.g., long
cylinders with very small longitudinal displacements). For cylinders in the plane stress state (e.g., open-
ended gun barrels), the analysis based on the strain gradient plasticity theory is expected to be more
complex, since the von Mises effective stress no longer has the linear form given in Eq. (12) (e.g., Gao,
1992). Whether a closed-form solution can be obtained for the plane stress counterpart problem using the
same strain gradient theory remains to be investigated.

The newly derived solution can be used to construct improved ECMs, which incorporate both the strain-
hardening and indentation size effects, for characterizing planar indentations. This is currently being pursued.
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