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Abstract

An analytical solution for the stress, strain and displacement fields in an internally pressurized thick-walled cylinder

of an elastic strain-hardening plastic material in the plane strain state is presented. A strain gradient plasticity theory is

used to describe the constitutive behavior of the material undergoing plastic deformations, whereas the generalized

Hooke�s law is invoked to represent the material response in the elastic region. The solution gives explicit expressions
for the stress, strain and displacement components. The inner radius of the cylinder enters these expressions not only in

non-dimensional forms but also with its own dimensional identity, unlike classical plasticity-based solutions. As a

result, the current solution can capture the size (strengthening) effect at the micron scale. The classical plasticity-based

solution of the same problem is shown to be a special case of the present solution. Numerical results for the maximum

effective stress in the cylinder wall are also provided to illustrate applications of the newly derived solution.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the context of classical plasticity, the internally pressurized thick-walled cylinder problem has been

well studied. Solutions of this problem have been derived in the literature using different constitutive

models. For example, for elastic perfectly plastic cylinders (tubes) under internal pressures exact solutions
were provided in Hill (1950) and Nadai (1950). A closed-form solution for an internally pressurized thick-

walled cylinder of an elastic strain-hardening plastic material in the plane strain state was derived in Gao

and Wei (1991), and an analytical solution for a similar problem in the plane stress state was developed in

Gao (1992). However, in these solutions (based on classical elasticity and plasticity theories) the size of the

cylinder is involved only in a non-dimensional fashion (and neither the inner nor the outer radius of the
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cylinder enters the solutions individually). This is true not only for the (larger) elastic domain, but also for

the (localized) plastic domain near the inner surface.

Expanding cavity models (e.g., Johnson, 1970; Yoffe, 1982) are often employed to describe stress re-

sponses of elastic–plastic materials to progressive indentation loading in indentation tests because of their
simplicity. For planar indentations the existing expanding cavity models (ECMs) are based on Hill�s (1950)
solution for the quasi-static expansion of a cylindrical tube of an elastic perfectly-plastic material under an

internal pressure. These ECMs have been found to break down for materials having appreciable strain-

hardening characteristics (e.g., Tabor, 1986; Lawn, 1998). Furthermore, indentation tests have revealed

that hardness, which is determined from the size of impression caused by indentation loads, is size de-

pendent when the characteristic length of the impression is on the order of tens of microns (e.g., Tabor,

1986; Hutchinson, 2000; Swadener et al., 2002). That is, the material hardness increases with the decrease of

the size of the indent at the micron scale. However, the existing ECMs do not have capabilities to account
for this indentation size effect, because Hill�s (1950) solution upon which the ECMs were built was derived
using classical plasticity that is local in nature and does not contain any internal length scale (Hutchinson,

2000). Therefore, higher-order (non-local) continuum theories should be applied to derive new solutions for

the thick-walled cylinder problem so that improved ECMs, which incorporate both the strain-hardening

and indentation size effects, can be ultimately constructed for modeling planar indentations.

The objective of the present paper is to provide such a solution using a strain gradient plasticity theory.

In the derivation, the classical elasticity theory (Hooke�s law) is used in the elastic region, whereas a strain
gradient plasticity theory is employed in the plastic region. The solution is derived in a closed form for
the stress, strain and displacement components. There is one parameter involved in the solution, whose

numerical values can be determined from its defining equation (one boundary condition) using a simple

iterative procedure. The inner radius of the cylinder is shown to explicitly appear in the solution with its

own dimensional identity, unlike that in a classical plasticity solution.

The rest of this paper is organized as follows. Section 2 begins with a brief review of various strain

gradient theories, resulting in the adoption of a gradient theory for the current analysis. The boundary-

value problem (BVP) is then formulated, which leads to a closed-form elasto-plastic solution based on the

chosen strain gradient plasticity theory. The classical plasticity-based solution of the cylinder problem is
recovered in Section 3 as a special case of the gradient plasticity-based solution. Also, numerical results for

the maximum effective stress in the cylinder wall are presented there to illustrate applications of the newly

derived solution. The paper concludes with several remarks in the fourth and last section.
2. Formulation of the boundary-value problem

2.1. Review of strain gradient plasticity theories

Classical plasticity theories are based on Cauchy�s stress principle, which assumes that the stress state at
a material point in a continuum is influenced only by the stress states of the points in the immediate
neighborhood of the material point. These plasticity theories do not consider long-range interactions

among material points and are therefore local in nature. Lacking an internal length parameter, classical

plasticity theories cannot describe the size effect observed in numerous experiments involving a small length

scale, which include indentation tests. This has motivated the development of strain gradient plasticity

theories (Hutchinson, 2000).

There exist two categories of strain gradient plasticity theories. In the first category, including those

of Fleck and Hutchinson (1993, 2001), Gao et al. (1999), Huang et al. (2000) and Hwang et al. (2002),

higher-order stresses (conjugated to higher-order strain gradients), in addition to the Cauchy stress, are
introduced, and higher-order (or additional) governing equations and extra boundary conditions are
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necessitated. In the second category, including the ones proposed by M€uuhlhaus and Aifantis (1991),
Acharya and Bassani (1996), Chen and Wang (2000) and Gao and Huang (2001), no higher-order stress is

involved and the balance laws remain the same as those in classical plasticity. Moreover, the last three of

the four strain gradient theories in the second category listed above are not accompanied by extra (higher-
order) boundary conditions in their original formulations. This feature would make the three theories very

attractive in applications, since higher-order boundary conditions may not be uniquely defined and/or can

be difficult to satisfy. However, the necessity of having extra boundary conditions in applying a lower-order

gradient theory in the second category has recently been demonstrated by Volokh and Hutchinson (2002).

In contrast, the lower-order gradient theory of M€uuhlhaus and Aifantis (1991), also belonging to the second
category and cited earlier, does involve extra boundary conditions, which are defined (non-uniquely) by a

variational principle. This theory has recently been used in Gao (2002, 2003) to obtain analytical solutions

of two different problems.
The strain gradient plasticity theory elucidated in M€uuhlhaus and Aifantis (1991) introduces higher-order

spatial gradients of the effective plastic strain into the yield condition (or the constitutive equation for the

flow stress), while leaving all other features of classical plasticity unaltered. The idea of modifying the

standard yield criterion in the afore-mentioned manner was explored earlier in Coleman and Hodgdon

(1985). This modification results in the inclusion of a length scale into classical plasticity and renders it

possible to model mechanical phenomena involving fine length scales. The simplest version of this strain

gradient plasticity theory in its rate-independent form (e.g., Zhu et al., 1997; Gao, 2002) utilizes, in the yield

condition,
re ¼ rHe � cr2ee; ð1Þ
where re and rHe are, respectively, the total and the homogeneous part of the effective stress, ee is the ef-
fective plastic strain, c is the strain gradient coefficient (i.e., a force-like constant measuring the effect of
strain gradient), and r2 is the Laplacian operator. The modified yield criterion then reads re6 ry (rather
than rHe 6 ry), where ry is the yield stress of the material; when the equality is reached, yielding will occur.
The extra boundary conditions arising from the inclusion of the strain gradient term in Eq. (1) can be

represented by
oee
on

¼ 0 or ee ¼ ee on oPB; ð2Þ
where oPB is the boundary of the plastic region, n is the unit outward normal to oPB, and the overbar stands
for the prescribed value. All other equations in classical plasticity will remain unchanged in this strain

gradient plasticity theory.

Eqs. (1) and (2) will be used, together with other relations in Hencky�s deformation theory of plasticity
(e.g., Mendelson, 1968; Gao, 1994, 1998, 1999), in deriving the solution for the plastic region.

2.2. Formulation

Consider an elasto-plastic plane strain cylinder of the inner radius a and outer radius b and subjected to
the internal pressure pi, as shown in Fig. 1. The usual polar coordinates (r; h) will be used to represent a
point on a cross section of the cylinder.

If pi is sufficiently small, the entire cylinder remains elastic. However, when pi becomes large enough, the
cylinder begins to yield from the inner surface r ¼ a. With the continuous increase of pi the yielded region
will expand outwardly. From symmetry it follows that the elasto-plastic interface is also a cylindrical

surface for any value of pi that produces a plastic region. Let rc be the radius of this elasto-plastic interface,
and pc be the associated pressure acting on the interface under pi (a generic value). Then, the material in the
region a6 r6 rc is in the plastic state, whereas the material in the region rc6 r6 b remains elastic under pi.
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Fig. 1. Problem configuration.
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When in a complex stress state, the power-law hardening model in classical plasticity has the form:
rHe ¼ jeme ; ð3Þ

where j and m are two material constants. It can be shown that j ¼ r1�m

y Em, with E being Young�s modulus
of the material. Eq. (3) will be used in Eq. (1) (as the expression for rHe ) to define the total effective stress re
in the strain gradient plasticity theory, which is to be applied to derive the solution in the plastic region. On

the other hand, the material response in the elastic region is assumed to still obey the generalized Hooke�s
law. This will allow the direct application of Lam�ee�s classical elasticity solution in the elastic region, which is
away from the (localized) plastic zone near the inner surface.
The elasto-plastic cylinder problem can now be formulated as a standard BVP and solved analytically.

2.2.1. Solution in the elastic region (rc 6 r6 b)
This region can be treated as a thick-walled cylinder of the inner radius r ¼ rc and outer radius r ¼ b and

subjected to the internal pressure pc. Then, using Lam�ee�s solution for the plane strain case (e.g., Little, 1973)
gives the stress components as
rrr ¼
pcr2c

b2 � r2c
1

�
� b2

r2

�
; rhh ¼

pcr2c
b2 � r2c

1

�
þ b2

r2

�
; rzz ¼ 2m

pcr2c
b2 � r2c

; ð4Þ
the strain components as
err ¼
1þ m
E

pcr2c
b2 � r2c

1

�
� 2m � b2

r2

�
;

ehh ¼
1þ m
E

pcr2c
b2 � r2c

1

�
� 2m þ b2

r2

�
;

ezz ¼ 0;

ð5Þ
and the displacement component as
u ¼ 1þ m
E

pcr2c
b2 � r2c

1

�
� 2m þ b2

r2

�
r: ð6Þ
In Eqs. (5) and (6), m is Poisson�s ratio of the material. Clearly, this solution is expressed in terms of two yet-
unknown parameters pc and rc, which will be determined from the boundary (interface) conditions later.
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On the elasto-plastic interface r ¼ rc, the stress components (through the effective stress) given in Eq. (4)
must satisfy the yield condition
rejr¼rc
¼ ry: ð7Þ
This provides one relation for determining pc and rc.

2.2.2. Solution in the plastic region (a6 r6 rc)
Under the assumptions of infinitesimal deformations, isotropic hardening, incompressibility and

monotonic loading, the governing equations in a stress formulation, which embody Hencky�s deformation
theory, the strain gradient theory (with the modified von Mises� yield criterion), and the power-law
hardening model, of the present axi-symmetric problem include the equilibrium equation (e.g., Chou and

Pagano, 1967)
rhh � rrr ¼ r
drrr

dr
; ð8Þ
the compatibility equation (e.g., Chou and Pagano, 1967)
r
dehh

dr
¼ err � ehh; ð9Þ
and the constitutive equations (e.g., Nadai, 1950; Gao, 1999, 2002)
err ¼
3

4

ee
re

ðrrr � rhhÞ ¼ �ehh; ð10Þ

re ¼ jeme � cr2ee; ð11Þ

re ¼
ffiffiffi
3

p

2
ðrhh � rrrÞ: ð12Þ
The boundary conditions of this problem are
rrrjr¼a ¼ �pi; rrrjr¼rc
¼ �pc; ð13a; bÞ

eejr¼a ¼ D; eejr¼rc
¼ ry

E
: ð14a; bÞ
Eq. (13a,b) are two standard boundary conditions for deriving a classical plasticity solution (e.g., Gao and

Wei, 1991; Gao, 1992), while Eq. (14a,b) are two extra boundary conditions arising from the use of the

strain gradient theory, as discussed earlier. Here, D is a constant to be determined as part of the solution.
Eqs. (8)–(12), (13a,b) and (14a,b) define the BVP for determining the stress and strain fields in the plastic

region. This BVP can be analytically solved as follows.

Using Eq. (12) in Eq. (10) gives
err ¼ �
ffiffiffi
3

p

2
ee; ehh ¼

ffiffiffi
3

p

2
ee: ð15Þ
Substituting Eq. (15) into Eq. (9) then yields
dee
ee

¼ �2 dr
r
: ð16Þ
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Integrating Eq. (16) from a to r and invoking Eq. (14a) will lead to
ee ¼ D
a2

r2
: ð17Þ
Inserting Eq. (17) into Eq. (14b) gives
D ¼ ry
E

r2c
a2

: ð18Þ
Eq. (18) provides a first relation among the three unknown parameters D, rc and pc.
Using Eq. (17) in Eq. (11) results in
re ¼ jDm a
r

� �2m
� 4cD a2

r4
: ð19Þ
Now inserting Eqs. (12) and (19) into Eq. (8) gives
drrr ¼
2ffiffiffi
3

p jDm a2m

r2mþ1

�
� 4cD a2

r5

�
dr: ð20Þ
A direct integration of Eq. (20) from a to r leads to, together with Eq. (13a),
rrr ¼ �pi þ
2ffiffiffi
3

p jDm

2m
1

��
� a2m

r2m

�
� cDa2

1

a4

�
� 1
r4

��
: ð21Þ
Substituting Eq. (21) into Eq. (13b) results in
pi � pc ¼
2ffiffiffi
3

p jDm

2m
1

��
� a2m

r2mc

�
� cDa2

1

a4

�
� 1
r4c

��
; ð22Þ
which is a second relation required for determining the three unknown parameters. The third relation is

furnished by Eq. (7). Using Eqs. (4) and (12) in Eq. (7) yields
pc ¼
ryffiffiffi
3

p 1

�
� r2c
b2

�
ð23Þ
as the last relation needed. Clearly, 06 pc < ry=
ffiffiffi
3

p
, as dictated by Eq. (23). By solving Eqs. (18), (22) and

(23), D, rc and pc will be determined. Inserting Eqs. (18) and (23) into Eq. (22) gives
pi ¼
ryffiffiffi
3

p 1

�
� r2c
b2

�
þ 2ffiffiffi

3
p j

2m
ry
E

� �m r2mc
a2m

��
� 1

�
� ryc

E
1

a2
r2c
a2

1

�
� a4

r4c

��
: ð24Þ
This equation may be solved by using an iterative procedure to obtain the value of rc for given values of E,
ry, j, m, c (material properties) and a (inner radius). Knowing rc, Eqs. (18) and (23) then give D and pc,
respectively. As displayed in Eqs. (18), (23) and (24), rc, D and pc are all dependent on the inner radius a.
This will lead to the stress and strain fields which are varying with a, as shown below.
Using Eqs. (12), (18), (19), (21) and (24) gives the two in-plane stress components as
rrr ¼ � ryffiffiffi
3

p 1

�
� r2c
b2

�
þ 2ffiffiffi

3
p j

2m
ry
E

� �m
1

��
� r2mc
r2m

�
� ryc

E
1

a2
r2c
a2

a4

r4c

�
� a4

r4

��
;

rhh ¼ � ryffiffiffip 1

�
� r2c

2

�
þ 2ffiffiffip j ry

� �m
1

��
þ ð2m� 1Þ r

2m
c

2m

�
� ryc 1

2

r2c
2

a4

4

�
þ 3a

4

4

�	
:

ð25Þ
3 b 3 2m E r E a a rc r
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It then follows from Eq. (25) that
rzz ¼
1

2
ðrrr þ rhhÞ

¼ � ryffiffiffi
3

p 1

�
� r2c
b2

�
þ 2ffiffiffi

3
p j

2m
ry
E

� �m
1

��
þ ðm� 1Þ r

2m
c

r2m

�
� ryc

E
1

a2
r2c
a2

a4

r4c

�
þ a4

r4

�	
ð26Þ
as the axial stress component. Substituting Eqs. (17) and (18) into Eq. (15) gives the strain components as
err ¼ �
ffiffiffi
3

p

2

ry
E

r2c
r2
; ehh ¼

ffiffiffi
3

p

2

ry
E

r2c
r2
; ezz ¼ 0: ð27Þ
Finally, from the geometric equations:
err ¼
du
dr

; ehh ¼
u
r

ð28Þ
and Eq. (27) it follows that the only non-zero (radial) displacement component is
u ¼
ffiffiffi
3

p

2

ry
E

r2c
r
: ð29Þ
This completes the derivation of the solution in the plastic region ða6 r6 rcÞ.
With the parameters pc and rc determined respectively from Eqs. (23) and (24), the stress, strain

and displacement components in the elastic region ðrc6 r6 bÞ can be readily obtained from Eqs. (4)–

(6).

Clearly, the stress components given in Eqs. (25) and (26) explicitly depend on the inner radius a as well
as the non-dimensional quantities rc=a and a=r, noting that rc=r ¼ ðrc=aÞða=rÞ and rc=b ¼ ðrc=aÞða=bÞ. This
size dependence is also displayed by the strain and displacement components listed in Eqs. (27) and (29) as

well as the stress, strain and displacement fields in the elastic region (see Eqs. (4)–(6)), because rc involved in
all relevant expressions is dependent on a, as shown in Eq. (24). Hence, the current solution has the capacity
to account for the size effect. This is not the case for classical plasticity-based solutions. For example, in the

elastic perfectly plastic solution of Nadai (1950) and in the elastic strain-hardening plastic solution of Gao

and Wei (1991) for the same problem using the classical plasticity theory only non-dimensional geometrical

quantities a=r and rc=r are involved, and the inner radius a does not enter the solution individually, as will
be seen in the next section.
3. Applications and numerical results

The elasto-plastic solution derived in the preceding section is applied here to obtain specific solutions

and numerical results.
3.1. Classical plasticity solution

When c ¼ 0, the BVP in the plastic region defined by Eqs. (8)–(12), (13a,b) and (14a,b) will be reduced to
that based on the Hencky deformation theory and the von Mises yield criterion in classical plasticity.
Hence, letting c ¼ 0 in Eqs. (25) and (26) gives



6452 X.-L. Gao / International Journal of Solids and Structures 40 (2003) 6445–6455
rrr ¼
ryffiffiffi
3

p
�
� 1

�
� r2c
b2

�
þ 1
m
1

�
� r2mc
r2m

��
;

rhh ¼
ryffiffiffi
3

p
�
� 1

�
� r2c
b2

�
þ 1
m
þ 2

�
� 1
m

�
r2mc
r2m

�
;

rzz ¼
ryffiffiffi
3

p
�
� 1

�
� r2c
b2

�
þ 1
m
þ 1

�
� 1
m

�
r2mc
r2m

�
ð30Þ
as the stress components, where rc satisfies
pi ¼
ryffiffiffi
3

p 1

��
� r2c
b2

�
þ 1
m

r2mc
a2m

�
� 1

��
; ð31Þ
which is reduced from Eq. (24) with c ¼ 0. In deriving Eqs. (30) and (31), use has also been made of
j ¼ r1�m

y Em. The strain and displacement components in the plastic region have the same expressions as

those listed in Eqs. (27) and (29) except that rc involved in the expressions is now defined by Eq. (31). The
same is true for the stress, strain and displacement components in the elastic region, which continue to be

given by Eqs. (4)–(6) (with only rc to be changed). This solution is identical with that derived in Gao and
Wei (1991) for the same problem using classical plasticity. That is, the current gradient plasticity solution

includes the classical plasticity-based solution as a special case. In particular, when m ¼ 0, the elastic power-
law plastic constitutive model employed here reduces to that for the elastic perfectly plastic material (see
Eq. (3)). For this particular case it follows from Eqs. (30) and (31), with m ¼ 0 and the use of l�Hôopital�s
rule, that
rrr ¼
ryffiffiffi
3

p
�
� 1þ r2c

b2
� 2 ln rc

r

�
; rhh ¼

ryffiffiffi
3

p 1

�
þ r2c
b2

� 2 ln rc
r

�
; rzz ¼

ryffiffiffi
3

p r2c
b2

�
� 2 ln rc

r

�
ð32Þ
and
pi ¼
ryffiffiffi
3

p 1

��
� r2c
b2

�
þ 2 ln rc

a

�
: ð33Þ
These expressions are identical to those given in Nadai (1950). Hence, the classical plasticity solution for the

elastic perfectly plastic thick-walled cylinder is recovered by the current solution as a limiting case with

c ¼ 0 and m ¼ 0.
For given loading ðpiÞ, material properties ðry;mÞ and radius ratio ðb=aÞ, Eq. (31) can be readily solved

to determine rc=a. From Eqs. (30), (27), (29), (4)–(6) and (23) it can be seen that the stress, strain and
displacement components of the resulting classical plasticity solution depend on the inner radius a only in a
non-dimensional fashion (with rc=r ¼ ðrc=aÞða=rÞ and rc=b ¼ ðrc=aÞða=bÞ), which differs from that displayed
by the gradient solution with c 6¼ 0. Clearly, this property of the classical plasticity-based solution is also
shown in the specific solution given in Eqs. (32) and (33).

3.2. Maximum effective stress

The effective stress ðreÞ measures the level of stress at a material point in a complex (multiaxial) stress
state. It follows from Eqs. (18) and (19) that the maximum effective stress in the cylinder wall is given by,

with rejr¼a ¼ rmaxe ,
rmaxe ¼ ry
rc
a

� �2m
� 4ry

c
E
1

a2
rc
a

� �2
; ð34Þ
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where use has been made of j ¼ r1�m
y Em. Let
Table

rmaxe =r

a (m

20 ·
40 ·
60 ·
80 ·
100

200

500

0.00

0.00

0.00

0.01

0.05

0.1
l 

ffiffiffiffi
c
E

r
ð35Þ
be a characteristic (internal) length, which is a material constant. Then, Eq. (34) can be rewritten as
rmaxe

ry
¼ rc

a

� �2m
� 4l

2

a2
rc
a

� �2
: ð36Þ
The classical plasticity solution gives, using Eqs. (12) and (30),
rmaxe

ry
¼ rc

a

� �2m
; ð37Þ
which could also have been obtained directly from Eq. (34) with c ¼ 0. A comparison of Eqs. (36) and (37)
shows that the gradient plasticity solution incorporates an internal (material) length, l, and includes the
inner radius, a, in both dimensional and non-dimensional forms, while the classical solution involves a only
in a non-dimensional fashion. The differences between the two solutions in terms of the maximum effective

stress are further illustrated in Fig. 2, which is based on the data listed in Table 1. In Fig. 2, Y denotes
rmaxe =ry. The material properties used to obtain the numerical values given in Table 1 are for an aluminum
material having E ¼ 73 GPa, m ¼ 0:25, c ¼ 2:5 N, and l ¼ 5:852ð10�6Þ m (Zhu et al., 1997; Gao, 2002,
0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 100 200 300 400 500
a (µm)

Y

Classical

Gradient

Fig. 2. Maximum effective stress in the cylinder wall.

1

y for different values of a (with rc=a ¼ 2:0)
) rmaxe =ry (gradient) rmaxe =ry (classical)

10�6 0.04435054868 1.41421356237

10�6 1.07174780895 1.41421356237

10�6 1.26200656085 1.41421356237

10�6 1.32859712402 1.41421356237

· 10�6 1.35941904183 1.41421356237

· 10 �6 1.40051493224 1.41421356237

· 10�6 1.41202178155 1.41421356237

1 1.41366561717 1.41421356237

2 1.41407657607 1.41421356237

5 1.41419164457 1.41421356237

1.41420808292 1.41421356237

1.41421334320 1.41421356237

1.41421350758 1.41421356237
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2003). The listed data are directly calculated from Eqs. (36) and (37) using Mathematica program (of

Wolfram Research, Inc.).

From Table 1 and Fig. 2, it is clear that the maximum effective stress predicted by the gradient plasticity

solution is indeed size dependent when the inner radius a is very small (on the order of tens of microns). The
smaller a is, the smaller rmaxe becomes, thereby explaining the size (strengthening) effect at the micron scale.

On the other hand, when the inner radius a is large (at the scale of 200 microns or above), the prediction of
the gradient plasticity solution approaches that of the classical plasticity solution, which is a constant in-

dependent of a. This indicates that there is no pronounced size effect if no small (micron) length scale is
involved, which is in agreement with what was noted by Hutchinson (2000) in a general context. Therefore,

the use of classical plasticity to describe macroscopic behavior (beyond micron scale) of internally pres-

surized thick-walled cylinders is justified.
4. Conclusion

An analytical solution is provided for the plane strain problem of an internally pressurized thick-walled

cylinder of an elastic strain-hardening plastic material. The solution is based on a strain gradient plasticity

theory, which introduces a higher-order spatial gradient (the Laplacian) of the effective plastic strain into the

standard expression of von Mises� yield condition in classical plasticity. Hencky�s deformation theory, the
modified von Mises yield criterion, and the power-law hardening model form the constitutive relations

governing deformations in the plastic region. The generalized Hooke�s law is used to describe material
behavior in the elastic region.

The solution is derived in a closed form. Explicit expressions are provided for the stress, strain and

displacement components in both the elastic and plastic regions. There is only one parameter involved in

the solution that needs to be determined numerically using an iterative procedure. These expressions show

that the cylinder inner radius enters the current solution with its own dimensional identity as well as in non-

dimensional forms, unlike solutions based on classical elasticity and plasticity theories.

The classical plasticity-based solution of the same cylinder problem is recovered by the current gradient

plasticity-based solution. Illustrative numerical results for the maximum effective stress in the cylinder wall
are presented to show how the two solutions may differ. It is found that the gradient solution can capture

the size effect, whereas the classical solution does not have the same capability. Nevertheless, the numerical

data demonstrate that the classical plasticity-based solution and the gradient plasticity-based solution

predict almost identical results if no small (micron) length scale is involved.

The analysis presented here is for pressurized cylinders undergoing plane strain deformations (e.g., long

cylinders with very small longitudinal displacements). For cylinders in the plane stress state (e.g., open-

ended gun barrels), the analysis based on the strain gradient plasticity theory is expected to be more

complex, since the von Mises effective stress no longer has the linear form given in Eq. (12) (e.g., Gao,
1992). Whether a closed-form solution can be obtained for the plane stress counterpart problem using the

same strain gradient theory remains to be investigated.

The newly derived solution can be used to construct improved ECMs, which incorporate both the strain-

hardening and indentation size effects, for characterizing planar indentations. This is currently being pursued.
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